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Abstract. Let A be a closed operator defined on a Banach space X and F be a bounded op-
erator defined on a appropriate space. In this paper, we characterize the mildly well-posedness
of the first order abstract Cauchy problem with finite delay, u′(t) = Au(t) + Fut, t > 0;

u(0) = x;
u(t) = ϕ(t), −r ≤ t < 0

,

solely in terms of a strongly continuous one-parameter family {G(t)}t≥0 of bounded linear
operators that satisfy the functional equation

G(t+ s)x = G(t)G(s)x+

∫ 0

−r

G(t+m)[SG(s+ ·)x](m)dm

for all t, s ≥ 0, x ∈ X. In case F ≡ 0 this property reduces to the characterization of well-
posedness for the first order abstract Cauchy problem in terms of the functional equation that
satisfy the C0-semigroup generated by A.

1. Introduction

Let X be a complex Banach space. In this paper, we study the first order abstract Cauchy
problem with finite delay  u′(t) = Au(t) + Fut, t > 0;

u(0) = x;
u(t) = ϕ(t), −r ≤ t < 0

, (1.1)

where A is a closed linear operator with domain D(A), F : Lp([−r, 0], X) → X is a bounded
linear map, r is a positive number and ϕ is a given initial function.

The field of linear (and nonlinear) delay differential equations has undergone a significant
development for several decades. In addition, its interaction with other scientific fields has also
increasing interest, in particular, in the study of biological models.

In case F ≡ 0 it is well known that (1.1) is well-posed (in a strong or mild sense) if and only
if A is the generator of a C0-semigroup, that is, a strongly continuous family of bounded and
linear operators {T (t)}t≥0 satisfying T (0) = I and the Cauchy’s functional equation

T (t+ s)x = T (t)T (s)x, t, s ≥ 0, x ∈ X. (1.2)

The theory of C0-semigroups is a well-established and developed theory, that starts from the
original monograph of Hille and Phillips [9]. For an up to date reference and historical remarks,
see e.g. Engel and Nagel [6].

In case F ̸= 0 there is an important amount of literature on the subject. For instance, Hale
[8] and Webb [20] began an abstract analysis, i.e. in the setting of Banach spaces, applying

2000 Mathematics Subject Classification. 39B72; 34K37; 34K06; 35R10.
Key words and phrases. C0-semigroups; finite delay; Cauchy problem; Functional equations; well posedness.
The second author is partially supported by FONDECYT #1170466 and DID S-2017-43.

1



2 CARLOS LIZAMA AND FELIPE POBLETE

methods coming from semigroup theory. After that, Travis and Webb [18, Section 4] studied
existence and stability of solutions when A is the generator of a compact semigroup, or an
analytic semigroup [19]. Fitzgibbon [7] was among the first to treat the nonautonomous case i.e.
A = A(t). Jiang, Guo and Huang [10] studied the well-posedness of the linear abstract problem
with unbounded delay operators. More recently, Ashyralyev and Agirseven [4] analyzed the
well-posedness of (1.1) when the delay admits the form of a nonautonomous and unbounded
operator.

After the method of semigroups, most of the approaches consists into associate to a given
delay equation an expanded space E (phase space) and a lifted unbounded operator (B,D(B))
and to demonstrate that the solutions of the abstract Cauchy problem associated to (B,D(B))
in E naturally correspond to those of the delay equation. Then, the task is to show that
the lifted operator (B,D(B)) generates a strongly continuous semigroup {T (t)}t≥0 on E, thus
implying the Cauchy problem is well-posed. See e.g. [5] and the monograph of Bátkai and
Piazzera [4].

However, this last method produces significant mathematical difficulties when we deal with
e.g. the regularity problem. For instance, suppose that the operator A in (1.1) generates
an analytic semigroup, a condition which is frequently assumed in the investigation of the
regularity problem. Then the lifted generator (B,D(B)) of the system does not generate an
analytic semigroup any more on the expanded spaces (cf. [11]).

First attempts to treat directly (1.1), that is without any assumption on the operator A and
neither appealing to some phase space, were made by Petzeltová [16], [17]. By replacing X
with a suitable interpolation space, she proves the existence of a family of bounded and linear
operators R(t) satisfying R′(t) = AR(t) + FRt, R(0) = I, R0 = 0.

In a recent paper, Liu [12] employed a direct method to deal with the regularity problem.
Liu developed a theory of retarded type operators {G(t)}, or fundamental solutions, for (1.1)
defined in a Hilbert space H. Among other interesting things, Liu proves that the following
functional equation is satisfied:

G(t+ s)x = G(t)G(s)x+

∫ 0

−r

G(t+m)[SG(s+ ·)x](m)dm, t, s ≥ 0, x ∈ H, (1.3)

where S is the so-called structure operator, which depends of F . We mention the remarkable
fact that in case F ≡ 0 the functional equation (1.3) coincides with (1.2).

Then it is natural to ask: Could the functional equation (1.3) completely characterize the
well-posedness of the abstract Cauchy problem with delay (1.1), in some sense?.

In this paper, we answer this question in the affirmative. We prove that a characterization of
(1.1) by means of (1.3) is true not only in Hilbert spaces but also in any general Banach space.
Specifically, we show that the existence of a strongly continuous family {G(t)}t≥0 of linear and
bounded operators, extended over −r ≤ t < 0 as the null operator, satisfying G(0) = I and
the functional equation (1.3), is equivalent to the well-posedness of the following integrated (or
mild) version of the problem (1.1): u(t) = x+ A

∫ t

0

u(s)ds+

∫ t

0

Fusds, t ≥ 0;

u(t) = ϕ(t), −r ≤ t < 0
, (1.4)

where x ∈ X and ϕ is a measurable function on Lp([−r, 0], X). A very remarkable fact is that
we not need the operator A as a generator of a C0-semigroup.

In consequence, the main novelty of this paper is that we are able to present a theory of
fundamental solutions for equations with bounded delay operators and then a kind of variation
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of constants formula. As a result, stability and stationary solutions could be deduced, as
done for instance in the recent reference [14] where F is considered also unbounded, and also
extensions and algebraic properties for solution families of vector-valued differential equations
with delay could be studied, following for instance the reference [1]. Several concrete examples
are analyzed to illustrate the theory.

The paper is organized as follows: In the second section we will present a proper definition
of a resolvent family with delay F in terms of the functional equation (1.3) and then we
introduce the concept of mildly well-posedness. We will exhibit different properties of this type
of resolvent families, being the most important that they are exponentially bounded, which
allow us to define a kind of generator of the family by making use of Laplace transform tools.
We finish the section showing that the mildly well-posedness of (1.1) implies the existence of
a resolvent family with delay F generated by the operator A. In the third section, we study
sufficient conditions on the resolvent family with delay F in order to ensure that the problem
(Ist) is mildly well-posed. A notable result is the following: If A is the generator of a C0-
semigroup defined on a Banach space X and and the delay operator F : Lp([−r, 0], X) → X is
defined by

Fϕ =

∫ 0

−r

H(θ)ϕ(θ)dθ,

where H is an B(X)-valued and q-integrable function on [−r, 0] with 1
q
+ 1

p
= 1, then the

problem  u′(t) = Au(t) + Fut, t ≥ 0;
u(0) = x;
u(t) = ϕ(t), −r ≤ t < 0

,

is mildly well-posed. Also, we will identify explicitly the generator of the resolvent family
in terms of {G(t)}t≥0. Finally, we show some applications, concrete examples and further
properties of a resolvent family with delay F generated by A.

2. Preliminaries

Most of the notation used throughout this paper is standard. Hence, we will denote by
N,Z,R and C the sets of natural, integer, real and complex numbers respectively. For the rest
of the paper, X and Y always are Banach spaces with norms ∥ · ∥

X
and ∥ · ∥

Y
; the subscripts

will be dropped when there is no danger of confusion. We denote by B(X, Y ) to the space of
all bounded linear operators from X to Y . In the case X = Y , we will write briefly B(X). Let
A : D(A) ⊂ X → X be a closed linear operator with domain D(A). The domain of A endowed
with the graph norm will be denoted by [D(A)], its resolvent set by ρ(A), and its spectrum by
σ(A) = Cr ρ(A). Further, the resolvent operator (λ− A)−1x will be denoted by R(λ,A)x for
λ ∈ ρ(A) and x ∈ X.

Let 1 6 p < ∞ be given, J ⊆ R an interval of real numbers and X a Banach space. By
Lp(J,X), we denote the Banach space of all p-integrable functions (in the sense of Bochner)
endowed with the norm

∥f∥p =
(∫

J

∥f(t)∥pXdt
)1/p

.

Analogously, for n ∈ N and 1 6 p < ∞ define the Sobolev spaces:

W n,p(J,X) = {f ∈ Lp(J,X) : f (k) ∈ Lp(J,X) for k ∈ {1, . . . n}}.

They are Banach spaces when endowed with the norm ∥f∥Wn,p = ∥f∥p + ∥f ′∥p + · · ·+ ∥f (n)∥p.
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Throughout the article we adopt the following notations: Given u ∈ Lp
loc([−r,∞), X), we

denote, for any t ≥ 0, the history function ut ∈ Lp([−r, 0], X) described by the formula ut(θ) =
u(θ + t) for θ ∈ [−r, 0], and Fu : [0,∞) → X by

Fu(t) = Fut.

In relation to the above, we infer from [6, pag. 35] that R+ ∋ t 7→ ut ∈ Lp([−r, 0], X), is a
continuous function, in particular Fu so is.

For two strongly continuous families of operators T,G : R+ → B(X), we denote the convo-
lution operator T ∗G : R+ ×X → X by

(T ∗G)(t)x =

∫ t

0

T (t− s)G(s)xds.

In addition, the product space X × Lp([−r, 0], X) with norm ∥Φ∥X̃ = (∥x∥p + ∥ϕ∥pLp)
1
p , for all

Φ = (x, ϕ) ∈ X × Lp([−r, 0], X), will be denoted by X̃.
For a function f ∈ L1

loc(R, X) we consider the Laplace transform

f̂(λ) :=

∫ ∞

0

e−λtf(t)dt, λ ∈ C. (2.1)

The abscissa of convergence of f̂ is given by

abs(f) := inf{ℜ(λ) : f̂(λ) exists}.
Is well known that the set of those λ ∈ C for which the Laplace integral (2.1) converges is
either empty or a right half-plane. A function f is called Laplace transformable if abs(f) < ∞.
We observe that if f is exponentially bounded i.e. there exist M ≥ 0 and ω ∈ R such that
∥f(t)∥ ≤ Meωt, then abs(f) < ∞.

3. Well-posedness

We start this section defining what we understand by a mild solution and the mildly well-
posedness of the problem (1.1).

Definition 3.1. A function u : [−r,∞) → X is called a mild solution of the problem (1.1)

associated to (x, ϕ) ∈ X̃ if u|[0,∞) ∈ C([0,∞), X),
∫ t

0
u(s)ds ∈ D(A) for all t ≥ 0 and u satisfies

(1.4).

Definition 3.2. We say that the problem (1.1) is mildly well-posed if, for every Φ ∈ X̃, there

is a unique mild solution uΦ of the problem (1.1) and if Φn ∈ X̃ is such that Φn → 0 then
uΦn(t) → 0 uniformly for t on compact subintervals of R+.

The next lemma will be useful throughout this paper.

Lemma 3.3. Let I ⊆ R be a measurable set and 1 6 p < ∞. Assume that the function f ∈
L1(I, Lp([−r, 0], X)). If F : Lp([−r, 0], X) → X is a bounded linear operator, then t 7→ Ff(t)
is integrable and

F

∫
I

f(t)dt =

∫
I

Ff(t)dt.

Furthermore, the function ζ : [−r, 0] → X defined by ζ(θ) =

∫
I

f(t)(θ)dt belongs to Lp([−r, 0], X)

and (∫
I

f(t)dt

)
(θ) =

∫
I

f(t)(θ)dt, for almost all θ ∈ [−r, 0].
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Proof. To abbreviate the text of this proof, for p > 1 we will write Lp
τ instead Lp([−τ, 0], X).

Moreover, to differentiate the integration in sense of Bochner of functions in the Banach spaces

L1(I, Lp([−τ, 0], X)) and L1(I, L1([−τ, 0], X)) we will use the symbols Lp
τ

∫
I

and L1
τ

∫
I

respectively.

On the one hand, since f ∈ L1(I, Lp([−τ, 0], X)) and F : Lp([−τ, 0], X) → X is bounded by
[2, Proposition 1.1.6] we obtain that t 7→ Ff(t) is integrable and

F

(
Lp
τ

∫
I

f(t)dt

)
=

∫
I

Ff(t)dt.

We note that there exists a sequence of simple functions {fn}n∈N ⊆ L1(I, Lp
τ ) such that

fn(t) → f(t) for almost all t ∈ I and

lim
n→∞

∫
I

∥fn(t)− f(t)∥Lp
τ
dt = 0.

Moreover, we note that {fn}n∈N ⊆ L1(I, L1
τ ) and applying the Hölder inequality we obtain∫

I

∥fn(t)− f(t)∥L1
τ
dt =

∫
I

(∫ 0

−r

∥fn(t)(θ)− f(t)(θ)∥dθ
)
dt

6 τ 1/q
∫
I

(∫ 0

−τ

∥fn(t)(θ)− f(t)(θ)∥pdθ
)1/p

dt.

Since the right side of the last inequality converges to 0 as n → ∞, we obtain that f ∈ L1(I, L1
τ ).

Moreover, we observe that Lp
τ

∫
I

fn(t)dt = L1
τ

∫
I

fn(t)dt, for all n ∈ N. This implies∥∥∥∥Lp
τ

∫
I

f(t)dt− L1
τ

∫
I

f(t)dt

∥∥∥∥
L1
τ

6
∥∥∥∥Lp

τ

∫
I

(f(t)− fn(t))dt+ L1
τ

∫
I

fn(t)− f(t)dt

∥∥∥∥
L1
τ

6
∫
I

∥f(t)− fn(t)∥Lp
τ
dt+

∫
I

∥fn(t)− f(t)∥L1
τ
dt.

Thus, since the right side converges to 0 as n → ∞, we conclude that,(
Lp
τ

∫
I

fn(t)dt

)
(θ) =

(
L1
τ

∫
I

fn(t)dt

)
(θ) for almost all θ ∈ [−τ, 0]. (3.1)

Define the mapping I : L1(I, L1
τ ) → L1(I×[−τ, 0], X) described by (If)(t, θ) = f(t)(θ). This

operator is an isomorphism between L1(I, L1
τ ) and L1(I× [−τ, 0], X). Hence, If is integrable in

L1(I × [−r, 0], X). Applying Fubini’s Theorem, we conclude that the function θ 7→
∫
I

I(t, θ)dt

is L1
τ -integrable.

We claim that

(
Lp
τ

∫
I

f(t)dt

)
(θ) =

∫
I

(If)(t, θ)dt for almost all θ ∈ [−τ, 0]. In fact, let

{fn}n∈N be a sequence of simple functions on L1(I, Lp
τ ) such that fn(t) → f(t) for almost all

t ∈ I and lim
n→∞

∫
I

∥fn(t)− f(t)∥L1
τ
dt = 0. This is equivalent to

lim
n→∞

∫ 0

−τ

∫
I

∥(Ifn)(t, θ)− (If)(t, θ)∥dtdθ = 0.
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It follows from the equality (3.1) that∥∥∥∥L1
τ

∫
I

f(t)dt−
∫
I

(If)(t, ·)dt
∥∥∥∥
L1
τ

=

∥∥∥∥L1
τ

∫
I

(f(t)− fn(t))dt+

∫
I

(Ifn)(t, ·)− (If)(t, ·)dt
∥∥∥∥
L1
τ

6
∫
I

∥f(t)− fn(t)∥Lp
τ
dt

+

∫ 0

−τ

∫
I

∥(Ifn)(t, θ)− (If)(t, θ)∥dtdθ.

The right side of the preceding inequality converges to 0 as n → ∞. Using the inequality (3.1)

we obtain that

(
Lp
τ

∫
I

f(t)dt

)
(θ) =

∫
I

(If)(t, θ)dt =
∫
I

f(t)(θ)dt, for almost all θ ∈ [−τ, 0]. �

The following lemma is a direct consequence of the previous result.

Lemma 3.4. Let u ∈ Lp
loc([−r,∞), X) be exponentially bounded on R+ with constants L, ω >

0. Then, for any λ > ω, the function
∫∞
0

e−λtutdt ∈ Lp([−r, 0], X) satisfies

F

∫ ∞

0

e−λtutdt =

∫ ∞

0

e−λtFutdt. (3.2)

Proof. Let λ > ω be fixed and Qλ : [0,∞) → Lp([−r, 0], X) defined by Qλ(t) = e−λtut. Since u
is exponentially bounded and u|[−r,r] ∈ Lp([−r, r], X), we have that∫ ∞

0

∥Qλ(t)∥Lpdt =

∫ ∞

0

(∫ 0

−r

e−λtp∥u(t+ θ)∥pdθ
)1/p

dt

=

∫ ∞

r

(∫ 0

−r

e−λtp∥u(t+ θ)∥pdθ
)1/p

dt+

∫ r

0

(∫ 0

−r

e−λtp∥u(t+ θ)∥pdθ
)1/p

dt

≤L

∫ ∞

r

e(ω−λ)t

(∫ 0

−r

eωθpdθ

)1/p

dt+

∫ r

0

e−λt

(∫ r

−r

∥u(θ)∥pdθ
)1/p

dt < ∞.

Thus Qλ is integrable and the function
∫∞
0

e−λtutdt ∈ Lp([−r, 0], X) is well defined. Since
F : Lp([−r, 0], X) → X is bounded, by Lemma 3.3 we conclude that (3.2) is satisfied. �

In what follows, for each φ ∈ Lp([−r, 0], X) we denote:

ϕ↑(t) =

{
φ(t), −r ≤ t ≤ 0;
0, t > 0

.

Observe that ϕ↑ ∈ Lp
loc([−r,∞), X). Also, if {G(t)}t≥0 ⊆ B(X) is extended over −r ≤ t < 0 as

the null operator, for any s ≥ 0 and x ∈ X we denote Gsx(θ) = G(s+ θ)x, where −r ≤ θ < 0.
Note that Gsx ∈ Lp([−r, 0], X).

Definition 3.5. A strongly continuous family {G(t)}t≥0 ⊆ B(X), extended over −r ≤ t < 0
as the null operator, is called a resolvent family with delay F if the following equation

G(t+ s)x = G(t)G(s)x+

∫ t

0

G(t−m)F(Gsx)↑(m)dm,

G(0) = I,

(3.3)

is satisfied for all s, t ≥ 0 and x ∈ X.
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The functional equation (3.3) corresponds to a rigorous representation of (1.3) in functional
analytical terms. See also [13, eq. (2.15)]. In the case F ≡ 0 the equation (3.3) coincides, and
will play the same role, with the well-known Cauchy functional equation

T (t+ s) = T (t)T (s), t, s ≥ 0,

associated to the abstract Cauchy problem of first order.
Concerning properties, our first result is the following.

Proposition 3.6. Suppose that {G(t)}t≥0 is a resolvent family with delay F . Then, {G(t)}t≥0

is an exponentially bounded family.

Proof. Let t > 1, x ∈ X and set s = t− 1. Using the Hölder inequality, the functional equation
(3.3) and the fact that M0 = sup

0≤t≤1
∥G(t)∥ < ∞, we obtain

∥G(t)x∥ ≤ ∥G(1)∥∥G(s)∥∥x∥+
∫ 1

0

∥G(1−m)∥∥F(Gsx)↑(m)∥dm

≤ ∥G(1)∥∥G(s)∥∥x∥+M0

(∫ 1

0

∥F(Gsx)↑(m)∥pdm
)1/p

≤ ∥G(1)∥∥G(s)∥∥x∥+M0∥F∥
(∫ 1

0

∥(Gsx)↑m∥
p
Lp([−r,0],X)dm

)1/p

.

(3.4)

Furthermore, it follows from the fact that {G(t)}t≥0 is extended over −r ≤ t < 0 as the null
operator, that∫ 1

0

∥(Gsx)↑m∥
p
Lp([−r,0],X)dm =

∫ 1

0

∫ 0

−r

∥(Gsx)↑(m+ θ)∥pdθdm

=

∫ 1

0

∫ m

−r+m

∥(Gsx)↑(θ)∥pdθdm

≤
∫ 1

0

∫ 1

−r

∥(Gsx)↑(θ)∥pdθdm =

∫ 0

−r

∥(Gsx)(θ)∥pdθ

=

∫ 0

−r

∥G(s+ θ)x∥pdθ =

∫ s

−r+s

∥G(θ)x∥pdθ

≤ r∥x∥p sup
0≤θ≤s

∥G(θ)∥p.

(3.5)

Thus, combining the inequalities (3.4) and (3.5), we obtain for all t > 1 :

∥G(t)x∥ ≤ ∥G(1)∥∥G(t− 1)∥∥x∥+M0∥F∥r1/p∥x∥ sup
0≤θ≤t−1

∥G(θ)∥

≤ (∥G(1)∥+M0∥F∥r1/p) sup
0≤θ≤t−1

∥G(θ)∥∥x∥.

Since the last inequality is valid for all x ∈ X, we conclude

∥G(t)∥ ≤ C0(M0 + sup
1<θ≤t−1

∥G(θ)∥), t > 2,

where C0 = ∥G(1)∥+M0∥F∥r1/p. Thus, for all t > 2 :

sup
1<θ≤t

∥G(θ)∥ ≤ C0(M0 + sup
1<θ≤t−1

∥G(θ)∥). (3.6)
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Let f : (1,∞) → R+ be defined by f(t) = sup
1<θ≤t

∥G(θ)∥, for t > 1 the integer nt such that

1 ≤ t− nt ≤ 2 and M1 = sup
1≤t≤2

f(t). It follows from the inequality (3.6) that for t > 2

f(t) ≤ M0(C0 + C2
0 + ....+ Cnt

0 f(t− nt))

≤ M0(1 +M1)

((
C0 +

1

C0

)
+

(
C0 +

1

C0

)2

+ ....+

(
C0 +

1

C0

)nt
)

≤ M0(1 +M1)

(
C0 +

1

C0

)nt

nt

≤ M0(1 +M1)

(
C0 +

1

C0

)t−1

(t− 1) ≤ M0(1 +M1)e
ln(C0+

1
C0

)(t−1)
et

≤ Meωt

where M = M0(1+M1)e
− ln(C0+

1
C0

)
and ω = ln(C0+

1
C0
)+1. Thus, f is exponentially bounded

on (2,∞), which implies that the family {G(t)}t≥0 is exponentially bounded. �

Given λ ∈ C, eλ denotes the function on Lp([−r, 0],C) described by eλ(θ) = eλθ for θ ∈ [−r, 0].
Observe that for each x ∈ X, eλx ∈ Lp([−r, 0], X). Furthermore, Bλ denotes the linear bounded
operator described by Bλx = F (eλx). Let A be a closed linear operator. The set ρ(A,F ) is
defined as the set of all values λ ∈ C for which the operator λI − A − Bλ : D(A) → X has a
bounded inverse, denoted by R(λ,A, F ), on the Banach space X.

The following theorem show that the resolvent families with delay F are exactly those strongly
continuous operator-valued functions whose Laplace transforms are resolvents.

Theorem 3.7. Assume that {G(t)}t≥0 be a resolvent family with delay F . Then, G is Laplace
transformable and there exists a linear operator A : D(A) ⊆ X → X such that λ ∈ ρ(A,F ) and

R(λ,A, F )x = Ĝ(λ)x

for all x ∈ X, λ > ω := abs(G).

Proof. By Proposition 3.6 the family {G(t)}t≥0 is exponentially bounded with constantsM,ω >
0, i.e. ∥G(t)∥ ≤ Meωt for all t ∈ R+. Observe that, for each t, s ∈ R+ and x ∈ X

∥(G ∗ F(Gsx)↑)(t)∥ ≤ ∥F∥
∫ t

0

∥G(t−m)∥∥(Gsx)↑m∥Lp([−r,0],X)dm

≤
∫ t

0

eω(t−m)

(∫ 0

−r

∥(Gsx)↑(m+ θ)∥pdθ
)1/p

dm

=

∫ t

0

eω(t−m)

(∫ m

−r+m

∥(Gsx)↑(θ)∥pdθ
)1/p

dm

≤
∫ t

0

eω(t−m)

(∫ t

−r

∥(Gsx)↑(θ)∥pdθ
)1/p

dm

=

∫ t

0

eω(t−m)

(∫ 0

−r

∥(Gsx)(θ)∥pdθ
)1/p

dm



ON A FUNCTIONAL EQUATION 9

=

∫ t

0

eω(t−m)

(∫ s

−r+s

∥G(θ)x∥pdθ
)1/p

dm

≤ M

∫ t

0

eω(t−m)

(∫ s

0

eωθp∥x∥pdθ
)1/p

dm

= M

(
eωsp − 1

ω

)(
eωt − 1

ω

)
∥x∥. (3.7)

Also, for λ, µ > ω ∫ ∞

0

∫ ∞

0

e−λt−µsG(t+ s)xdtds =
Ĝ(λ)x− Ĝ(µ)x

µ− λ
.

Let λ, µ > ω and x ∈ X. We infer from (3.7) and Lemmas 3.4 and 3.3∫ ∞

0

∫ ∞

0

e−λt−µs(G ∗ F(Gsx)↑)(t)dtds =

∫ ∞

0

e−µs

(∫ ∞

0

e−λt(G ∗ F(Gsx)↑)(t)dt

)
ds

=

∫ ∞

0

e−µsĜ(λ)

(∫ ∞

0

e−λtF(Gsx)↑(t)dt

)
ds

=

∫ ∞

0

e−µsĜ(λ)F

[∫ ∞

0

e−λt(Gsx)↑tdt

]
ds

= Ĝ(λ)F

∫ ∞

0

∫ ∞

0

e−µse−λt(Gsx)↑tdtds.

(3.8)

Observe that for almost all θ ∈ [−r, 0](∫ ∞

0

∫ ∞

0

e−µse−λt(Gsx)↑tdtds

)
(θ) =

∫ ∞

0

∫ −θ

0

e−µse−λtG(s+ t+ θ)xdtds

=

∫ −θ

0

e−λt

(∫ ∞

0

e−µsG(s+ t+ θ)xds

)
dt

=

∫ −θ

0

e−λt

(∫ ∞

t+θ

e−µ(s−t−θ)G(s)xds

)
dt

=

∫ −θ

0

e(µ−λ)teµθ
(∫ ∞

0

e−µsG(s)xds

)
dt

= eµθ
(
e−(µ−λ)θ − 1

µ− λ

)
Ĝ(µ)x

=

(
eλθ − eµθ

µ− λ

)
Ĝ(µ)x.

(3.9)

Thus, combining (3.8) with (3.9), we conclude that∫ ∞

0

∫ ∞

0

e−λt−µs(G ∗ F(Gsx)↑)(t)dtds = Ĝ(λ)

(
Bλ −Bµ

µ− λ

)
Ĝ(µ)x.

Applying the double Laplace transform to the equation (3.3) we obtain,

Ĝ(λ)x− Ĝ(µ)x

µ− λ
= Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)

(
Bλ −Bµ

µ− λ

)
Ĝ(µ)x, (3.10)

which is equivalent to

Ĝ(λ)x− Ĝ(µ)x = (µ− λ)Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)(Bλ −Bµ)Ĝ(µ)x. (3.11)
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Let x ∈ ker Ĝ(λ) be given. Since G(0)x = x and Ĝ(λ)x = 0 for all λ > ω we have that x = 0,

and thus ker Ĝ(λ) = {0} and Ĝ(λ) : X → Im(Ĝ(λ)) is invertible. Let λ, µ > ω be fixed. We
define the mapping

A : Im(Ĝ(λ)) → X

x → Ax = λx−Bλx− Ĝ−1(λ)x.
(3.12)

Since (3.11) is satisfied, we obtain that Im(Ĝ(λ)) = Im(Ĝ(µ)) and for x ∈ Im(Ĝ(λ)) the identity

λx−Bλx− Ĝ−1(λ)x = µx−Bµx− Ĝ−1(µ)x,

holds. Thus, the operator A does not depend of the selection of λ > ω. Hence A is well defined.
Is not difficult to see, by the definition of A that Ĝ(λ) = (λ−A−Bλ)

−1. Since Ĝ(λ) is bounded
we conclude that λ ∈ ρ(A,F ) for all λ > ω, proving the theorem. �

We say that the operator A defined by (3.12) is the generator of the resolvent family with
delay F . Before to state the main theorem of this section, we need the following lemma.

Lemma 3.8. Suppose that {G(t)}t≥0 ⊆ B(X) is a strongly continuous family, extended as the
null operator as −r ≤ t < 0, and h ∈ L1

loc([−r,∞), X). Then,

F(G ∗ h)(t) = (FG ∗ h)(t),
for all t ≥ 0.

Proof. Let t ≥ 0 be given and Q : [0, t] → Lp([−r, 0], X) defined by Q(s) = Gt−sh(s). Observe
that ∫ t

0

∥Q(s)∥Lp([−r,0],X)ds ≤
∫ t

0

(∫ 0

−r

∥G(t− s+ θ)h(s)∥pdθ
)1/p

ds

≤ sup
−r≤ω≤t

∥G(ω)∥
∫ t

0

(∫ 0

−r

∥h(s)∥pdθ
)1/p

ds

≤ sup
−r≤ω≤t

∥G(ω)∥r1/p
∫ t

0

∥h(s)∥ds < ∞.

Thus Q is integrable. Then by Lemma 3.3 we have

F

∫ t

0

Q(s)ds =

∫ t

0

FQ(s)ds =

∫ t

0

FGt−sh(s)ds = (FG ∗ h)(t). (3.13)

Now, for almost all θ ∈ [−r, 0], and because G(t) is the null operator for t ∈ [−r, 0), we obtain∫ t

0

Q(s)ds(θ) =

∫ t

0

G(t− s+ θ)h(s)ds =

∫ t+θ

0

G(t− s+ θ)h(s)ds = (G ∗ h)t(θ).

Thus, by (3.13) we obtain that

F(G ∗ h)(t) = (FG ∗ h)(t),
for all t ≥ 0. Hence the proof is complete. �

The following is the main result of this section and one of the main results of this paper.

Theorem 3.9. Let A be a closed operator. Suppose that the problem (1.1) associated to A
is mildly well-posed. Then, the family {G(t)}t≥0 of operators from X into itself, defined by

G(t)x = uΦ(t), Φ = (x, 0) ∈ X̃, and extended as the null operator for −r ≤ t < 0, is a resolvent
family with delay F generated by the operator A.
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Proof. Is not difficult to see, by the uniqueness, that {G(t)}t≥0 is well defined and is also a
strongly continuous family of linear operators. Further, let t ≥ 0 and {xn}n∈N ⊆ X be such

that xn → 0. Then Φn = (xn, 0) → (0, 0) on X̃ and we have that G(t)xn = u(t,Φn) → 0 as
n → ∞. Therefore, G(t) is a bounded linear operator on X. Also

G(t)x = x+ A(1 ∗G)(t)x+ (1 ∗ FG)(t)x, (3.14)

for all t ≥ 0 and x ∈ X.
Let s ≥ 0, x ∈ X be given. Consider G̃ : [−r,∞) → B(X) defined by

G̃(t)x =

{
G(s+ t)x, t ≥ 0;
0, −r ≤ t < 0

,

and v : [−r,∞) → X defined by v(t) = G̃(t)x− (G ∗F(Gsx)↑)(t). We observe that v(t) = 0 for
all −r ≤ t < 0 and (1 ∗ v)(t) ∈ D(A) for all t ≥ 0, since (1 ∗G)(t)x ∈ D(A) for all t ≥ 0 x ∈ X,
A is closed operator and the equation (3.14) is satisfied. From equation (3.14) we have

A(1 ∗ v)(t) = A(1 ∗ G̃)(t)x− A((1 ∗G) ∗ F(Gsx)↑)(t)

= A(1 ∗ G̃)(t)x− (G ∗ F(Gsx)↑)(t) + (1 ∗ F(Gsx)↑)(t)

+ ((1 ∗ FG) ∗ F(Gsx)↑)(t).

(3.15)

On the one hand, for t ≥ 0, using Lemma 3.3 we obtain that

A(1 ∗ G̃)(t)x = A

∫ t

0

G(s+ r)xdr = A

∫ t+s

s

G(r)xdr = A

∫ t+s

0

G(r)xdr − A

∫ s

0

G(r)xdr

= G(t+ s)x− x−
∫ t+s

0

FGrxdr −G(s)x+ x+

∫ s

0

FGrxdr

= G(t+ s)x−G(s)x−
∫ t+s

s

FGrxdr = G̃(t)x−G(s)x−
∫ t+s

s

FGrxdr

= G̃(t)x−G(s)x− F

∫ t+s

s

Grxdr,

and for almost all θ ∈ [−r, 0](∫ t+s

s

Grxdr

)
(θ) =

∫ t+s

s

G(r + θ)xdr =

∫ t

0

G(s+ r + θ)xdr

=

∫ t

−θ

G(s+ r + θ)xdr +

∫ −θ

0

G(s+ r + θ)xdr

=

∫ t

0

G̃(r + θ)xdr +

∫ t

0

(Gsx)↑(r + θ)dr

=

(∫ t

0

G̃rxdr

)
(θ) +

(∫ t

0

(Gsx)↑rdr

)
(θ).

Thus,

A(1 ∗ G̃x)(t) = G̃(t)x−G(s)x− (1 ∗ FG̃)(t)x− (1 ∗ F(Gsx)↑)(t)x. (3.16)

On the other hand, using Lemma 3.8, we have that

((1 ∗ FG) ∗ F(Gsx)↑)(t) = (1 ∗ F(G ∗ F(Gsx)↑)))(t). (3.17)



12 CARLOS LIZAMA AND FELIPE POBLETE

It follows from the equations (3.15), (3.16) and (3.17) that

A(1 ∗ v)(t) = G̃(t)x− (G ∗ F(Gsx)↑)(t)−G(s)x− (1 ∗ FG̃)(t)x+ (1 ∗ F(G ∗ F(Gsx)↑))(t)

= v(t)−G(s)x− (1 ∗ Fv)(t).

Hence, we have obtained that v is a mild solution of the problem (1.1) associated to (G(s)x, 0) ∈
X̃. By the uniqueness we obtain

v(t) = G(t)G(s)x, t ≥ 0.

Since, s ≥ 0 and x ∈ X was arbitrarily selected, we conclude

G(t+ s)x−
∫ t

0

G(t−m)F(Gsx)↑(m)dm = G(t)G(s)x,

for all t, s ≥ 0, x ∈ X. Hence {G(t)}t≥0 is a resolvent family with delay F . In particular G is
Laplace transformable by Proposition 3.6.

Now we will show that A is the generator of {G(t)}t≥0. Let A0 be the generator operator of

G defined in (3.12). By the closedness of the operator A we obtain that Ĝ(λ)x ∈ D(A) for all

λ > ω := abs(G) and x ∈ X. Thus, if x ∈ D(A0) then we have x = Ĝ(λ)(λ−A0−Bλ)x ∈ D(A)
which implies D(A0) ⊆ D(A). On the other hand, applying the Laplace transform to (3.14) we
obtain

x = (λ− A−Bλ)Ĝ(λ)x = (λ− A−Bλ)R(λ,A0, F )x.

If (λ− A−Bλ) is an injective operator for all λ > ω, then we can conclude that

R(λ,A0, F )x = R(λ,A, F )x,

for all x ∈ X. Consequently D(A) ⊆ D(A0) and A = A0.
In order to show that (λ−A−Bλ) is injective, let λ > ω and x ∈ ker(λ−A−Bλ) be fixed.

On the one hand, let v : [−r,∞) → X be defined by v(t) = eλtx. We note, for t ≥ 0, that

x+ A(1 ∗ v(t)) + (1 ∗ Fv)(t) = x+ A

(
eλt

λ
x− x

λ

)
+Bλ

(
eλt

λ
x− x

λ

)
= eλtx = v(t).

Thus v is a mild solution of the problem (1.1) associated to (x, ϕ) ∈ X̃, where ϕ(θ) = eλθx,
θ ∈ [−r, 0]. On the other hand, since (1 ∗G)(t)x ∈ D(A) is satisfied for all x ∈ X and t ≥ 0 we
conclude, by the closedness of A, that (1 ∗ (G ∗ Fϕ↑))(t)x ∈ D(A). We infer from (3.14) and
Lemma 3.8 that

(G ∗ Fϕ↑)(t)x = (1 ∗ Fϕ↑)(t)x+ A(1 ∗G ∗ Fϕ↑)(t)x+ (1 ∗ FG ∗ Fϕ↑)(t)x

= (1 ∗ Fϕ↑)(t)x+ A(1 ∗G ∗ Fϕ↑)(t)x+ (1 ∗ F(G ∗ Fϕ↑))(t)x

= A(1 ∗G ∗ Fϕ↑)(t)x+ (1 ∗ F(G ∗ Fϕ↑ + ϕ↑))(t)x.

Thus, since ϕ↑(t) = 0 for all t ≥ 0, we have

(G ∗ Fϕ↑ + ϕ↑)(t)x = A(1 ∗ (G ∗ Fϕ↑ + ϕ↑))(t)x+ (1 ∗ F(G ∗ Fϕ↑ + ϕ↑))(t)x,

for all x ∈ X, t ≥ 0. Hence, G ∗ Fϕ↑ + ϕ↑ is a mild solution of the problem (1.1) associated to

(ϕ↑, 0) ∈ X̃. Consequently, v−G∗Fϕ↑−ϕ↑ is a mild solution of the problem (1.1) associated to

(0, x) ∈ X̃ and by the uniqueness we have v(t) = G(t)x+G ∗Fϕ↑(t)+ϕ↑(t) for all t ∈ [−r,∞).

Since Ĝ(λ)x exists for all λ > ω we conclude that v̂(λ) so is. The only way this will happen is
that x = 0. Therefore, (λ−A−Bλ) is an injective operator. Hence the proof is complete. �
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4. A characterization

In this section we characterize the mildly well-posedness of problem (1.1) in terms of a
resolvent family {G(t)}t≥0 generated by a closed linear operator A. To make this possible, will
be useful to consider the following strongly continuous family of operators {1(t)}t≥−r defined
by

1(t)x =

{
x, t ≥ 0;
0, −r ≤ t < 0

.

It follows from Lemma 3.3 that F̂1(λ)x = 1
λ
Bλx for all λ ≥ 0, x ∈ X.

Proposition 4.1. Suppose that {G(t)}t≥0 ⊆ B(X) is a resolvent family with delay F generated
by the operator A. Then, the following assertions holds:

(i) (1 ∗G)(t)x ∈ D(A) for all x ∈ X, t ≥ 0.
(ii) G(t)x = x+ A(1 ∗G)(t)x+ (1 ∗ FG)(t)x for all x ∈ X, t ≥ 0.
(iii) G(t)x = x+ (G ∗ A)(t)x+ (G ∗ F1)(t)x for all x ∈ D(A), t ≥ 0.
(iv) The operator A is closed with dense domain on X.

Proof. Let x ∈ X and λ > abs(G) be given. Since Ĝ(λ)x = R(λ,A, F )x by Theorem 3.7, we

obtain that Ĝ(λ)x ∈ D(A) and

A

(
1

λ
Ĝ(λ)x

)
= Ĝ(λ)x− 1

λ
x− 1

λ
BλĜ(λ)x.

Then it follows from [2, Proposition 1.7.6] that (1 ∗G)(t)x ∈ D(A) and

G(t)x = x+ A(1 ∗G)(t)x+ (1 ∗ FG)(t)x,

for all t ≥ 0, x ∈ X, showing the items (i) and (ii). Since

x = Ĝ(λ)(λ− A−Bλ)x, (4.1)

holds for all x ∈ D(A), we obtain, by the inversion of Laplace transform, that

x = G(t)x− (G ∗ A)(t)x− (G ∗ F1)(t)x,
for all t ≥ 0 and x ∈ D(A). Hence (iii) is satisfied. Let {xn} ⊆ D(A) be a sequence such that
xn → x and Axn → y as n → ∞. It follows from (4.1) that

x = Ĝ(λ)(λx− y −Bλx).

Thus x ∈ D(A) and y = λx−Bλx−G(λ)−1x = Ax, by the definition of A in (3.12). Hence A
is closed. Finally observe that∥∥∥∥1 ∗G(s)x

s
− x

∥∥∥∥ ≤ 1

s

∫ s

0

∥G(µ)xn − x∥ dµ ≤ sup
µ∈[0,s]

∥G(µ)x− x∥ .

Then, taking into account the strong continuity at t = 0, we obtain

lim
s→0+

(1 ∗G)(s)x

s
= x. (4.2)

Since it was proved that (1 ∗G)(t)x ∈ D(A) for all t ≥ 0, defining

xn =
(1 ∗G)( 1

n
)

1
n

x, n ∈ N,

it follows from (4.2) that xn ∈ D(A) and lim
n→∞

xn = x, proving the density of D(A). �
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Remark 4.2. We notice that, when F ≡ 0, A is the generator of a C0-semigroup see ([6,
Definition 1.2]) and the denseness of D(A) is always present under the conditions of the above
theorem, which is a well known result in the theory of C0-semigroups.

The next result allows to represent the generator of a resolvent family with delay F directly
in terms of {G(t)}t≥0 without the help of the Laplace transform.

Proposition 4.3. Suppose that {G(t)}t≥0 ⊆ B(X) is a resolvent family with delay F generated
by the operator A. Then A = B where

D(B) :=

{
x ∈ X : lim

t→0+

G(t)x− x

t
exists

}
and

Bx := lim
t→0+

G(t)x− x

t
, x ∈ D(B). (4.3)

Proof. Consider the linear operator B defined in (4.3). We observe, for 0 < t ≤ r, that

1

t
∥(G ∗ F1)(t)x∥ ≤ 1

t

∫ t

0

∥G(t− s)∥∥F∥∥1sx∥Lp([−r,0],X)ds

≤ sup
0≤s≤t

∥G(s)∥∥F∥1
t

∫ t

0

(∫ 0

−r

∥1(s+ θ)x∥pdθ
)1/p

ds

= sup
0≤s≤t

∥G(s)∥∥F∥1
t

∫ t

0

(∫ s

−r+s

∥1(θ)x∥pdθ
)1/p

ds

= sup
0≤s≤t

∥G(s)∥∥F∥1
t

∫ t

0

(∫ s

0

∥x∥pdθ
)1/p

ds

≤ sup
0≤s≤t

∥G(s)∥∥F∥∥x∥t1/p.

(4.4)

Let x ∈ D(A) be given. It follows from (iii) of Proposition 4.1 that

G(t)− x

t
=

(G ∗ 1)(t)Ax
t

+
(G ∗ F1)(t)x

t
, t ≥ 0.

By (4.2) and (4.4), the right side of the above equation converges to Ax as t → 0+. Hence
x ∈ D(B) and Bx = Ax.

On the other hand, we observe, for 0 < t ≤ r, that

1

t
∥(1 ∗ FG)(t)x∥ ≤ 1

t

∫ t

0

∥F∥∥Gsx∥Lp([−r,0],X)ds

= ∥F∥1
t

∫ t

0

(∫ 0

−r

∥G(s+ θ)x∥pdθ
)1/p

ds

= sup
0≤s≤t

∥G(s)∥∥F∥1
t

∫ t

0

(∫ s

−r+s

∥G(θ)x∥pdθ
)1/p

ds

= sup
0≤s≤t

∥G(s)∥∥F∥1
t

∫ t

0

(∫ s

0

∥G(θ)x∥pdθ
)1/p

ds

≤ sup
0≤s≤t

∥G(s)∥∥F∥∥x∥t1/p.

(4.5)
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Let x ∈ D(B) be given. It follows from items (i), (ii) and (iii) of Proposition 4.1 that xt :=
(1∗G)(t)

t
x ∈ D(A) and

Axt = A
(1 ∗G)(t)x

t
=

G(t)x− x

t
− (1 ∗ FG)(t)x

t
,

for all t ≥ 0. By (4.5) the right side of the last equation converges to Bx and xt converges to x
as t → 0. By the closedness of operator A we can conclude that x ∈ D(A) and Ax = Bx. This
finishes de proof. �

Our next Theorem, which is one of the main results in this section, gives sufficient conditions
for the mildly well-posedness of the problem (1.1) in terms of the functional equation (3.3).

Theorem 4.4. Assume that {G(t)}t≥0 ⊆ B(X) is a resolvent family with delay F generated by
A. Then the problem (1.1) is mildly well-posed.

Proof. (Existence) Let (x, ϕ) ∈ X̃ be given and define v(t) = G(t)x + (G ∗ Fϕ↑)(t) + ϕ↑(t),
t ≥ −r. Since G is a strongly continuous family and ϕ↑(t) = 0 for all t ≥ 0, we have that v is
continuous on [0,∞). Let t ≥ 0 be fixed. It follows from (i) and (iv) of Proposition 4.1 that
(1 ∗ G)(t) ∈ D(A) and A is a closed operator. Thus, we obtain ((1 ∗ G) ∗ Fϕ↑)(t) ∈ D(A).
Further (1 ∗ v)(t) = (1 ∗ G)(t)x + ((1 ∗ G) ∗ Fϕ↑)(t) which implies (1 ∗ v)(t) ∈ D(A). On the
one hand, it follows from item (ii) of Proposition 4.1 and Lemma 3.8 that

A(1 ∗ v)(t) = A(1 ∗G)(t)x+ A((1 ∗G) ∗ Fϕ↑)(t)

= G(t)x− x− (1 ∗ FG)(t)x+ (G ∗ Fϕ↑)(t)− (1 ∗ Fϕ↑)(t)− ((1 ∗ FG) ∗ Fϕ↑)(t)

= v(t)− x− (1 ∗ Fϕ↑)(t)− (1 ∗ FG)(t)x− ((1 ∗ FG) ∗ Fϕ↑)(t)

= v(t)− x− (1 ∗ Fϕ↑)(t)− (1 ∗ FG)(t)− (1 ∗ (FG ∗ Fϕ↑))(t)

= v(t)− x− (1 ∗ Fϕ↑)(t)− (1 ∗ FG)(t)− (1 ∗ F(G ∗ Fϕ↑))(t).

On the other hand, we have

(1 ∗ Fv)(t) = (1 ∗ FG)(t)x+ (1 ∗ F(G ∗ Fϕ↑))(t) + (1 ∗ Fϕ↑)(t).

Taking into account the above two identities, we conclude that

A(1 ∗ v)(t) = v(t)− x− (1 ∗ Fv)(t).

It proves that v is a mild solution of problem (1.1) associated to (x, ϕ) ∈ X̃.
(Uniqueness) Suppose that u1, u2 are two mild solutions of the problem (1.1) associated to

the initial condition Φ = (x, ϕ) ∈ X̃. Then, v : [−r,∞) → X defined by v(t) = (u1 − u2)(t)

is a mild solution of the problem (1.1) associated to (0, 0) ∈ X̃. It follows from item (iii) of
Proposition 4.1 that

x = G(t)x− (G ∗ A)(t)x− (G ∗ F1)(t)x,
for all t ≥ 0 and x ∈ D(A). The last equality and the fact (1∗v)(t) ∈ D(A) for all t ≥ 0, allows
us to conclude

(1 ∗ (1 ∗ v))(t) = (G ∗ (1 ∗ v))(t)− ((G ∗ A) ∗ (1 ∗ v))(t)− ((G ∗ F1) ∗ (1 ∗ v))(t)
= (G ∗ (1 ∗ v))(t)− (G ∗ (1 ∗ A(1 ∗ v)))(t)− (G ∗ (1 ∗ (F1 ∗ v)))(t).

(4.6)

Note that F1 ∗ v = 1 ∗ Fv. Indeed, let t ≥ 0 be given, then f t : [0, t] → Lp([−r, 0], X) defined
by f t(s) = 1t−sv(s) is integrable. By Lemma 3.3

F

∫ t

0

f t(s)ds =

∫ t

0

Ff t(s)ds =

∫ t

0

F1t−sv(s)ds = (F1 ∗ v)(t), (4.7)
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and for almost all θ ∈ [−r, 0] we have(∫ t

0

f t(s)ds

)
(θ) =

∫ t

0

1(t+ θ − s)v(s)ds =

∫ t−θ

−θ

1(t− s)v(s+ θ)ds

=

∫ t

0

1(t− s)v(s+ θ)ds−
∫ −θ

0

1(t− s)v(s+ θ)ds

+

∫ t−θ

t

1(t− s)v(s+ θ)ds

=

∫ t

0

v(s+ θ)ds =

∫ t

0

vs(θ)ds.

(4.8)

Then, using Lemma 3.3 and the equations (4.7), (4.8) we can conclude that, for each t ≥ 0

(1 ∗ Fv)(t) = (F1 ∗ v)(t).

Thus, combining the above equality with (4.6) and the fact that v is a mild solution associated

to (0, 0) ∈ X̃ we obtain

(1 ∗ (1 ∗ v))(t) = (G ∗ (1 ∗ v − 1 ∗ A(1 ∗ v)− 1 ∗ (1 ∗ Fv)))(t)
= (G ∗ (1 ∗ (v − A(1 ∗ v)− (1 ∗ Fv))))(t) = 0,

for all t ≥ 0. Thus, by Titchmarsh’s theorem, we conclude that v(t) = 0 for all t ≥ 0, proving
the uniqueness.

(Continuity) Suppose that Φn = (xn, ϕn) ∈ X̃ is such that Φn → 0. Let t ≥ 0 and p > 1 be
given. By the Hölder inequality and the uniform boundedness principle we have

∥u(t,Φn)∥ ≤ ∥G(t)xn∥+ ∥(G ∗ Fϕn↑)(t)∥

≤ ∥G(t)xn∥+
(∫ t

0

∥G(s)∥qds
) 1

q
(∫ t

0

∥Fϕn↑(s)∥pds
) 1

p

≤ ∥G(t)xn∥+

(
t sup
s∈[0,t]

∥G(s)∥q
) 1

q (
t∥F∥p

∫ t

−r

∥ϕn↑(s)∥pds
) 1

p

= ∥G(t)xn∥+ t∥F∥ sup
s∈[0,t]

∥G(s)∥
(∫ 0

−r

∥ϕn↑(s)∥pds
) 1

p

.

Using that Φn → 0 as n → ∞ we conclude that the right hand side of the above equation
converges to zero uniformly for t in compact intervals. The case for p = 1 is proven similarly.
Hence, the problem (1.1) is mildly well-posed.

�
As a directly consequence of the proof of the preceding theorem we obtain the following kind

of variation of constants formula.

Proposition 4.5. Suppose that {G(t)}t≥0 ⊆ B(X) is a resolvent family with delay F generated
by A. Then, for all ϕ ∈ Lp([−r, 0], X) the function v : [−r,∞) → X defined by

v(t) = G(t)x+ (G ∗ Fϕ↑)(t) + ϕ↑(t),

is the unique mild solution of problem (1.1) associated to (x, ϕ) ∈ X̃.

Now, we are ready to state the main result of this paper.
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Theorem 4.6. Suppose that A : D(A) ⊆ X → X a closed linear operator. Then the problem
(1.1) is midly well-posed if and only if A is the generator of a resolvent family with delay F .

Proof. The result is implied by Theorems 4.4 and 3.9. �

Remark 4.7. With similar arguments, the previous result can be extended to include equations
of the form: u(t) = x+ A

∫ t

0

u(s)ds+

∫ t

0

Fusds+

∫ t

0

m∑
i=1

Cix(t− ri)ds, t ≥ 0;

u(t) = ϕ(t), −r ≤ t < 0

,

where Ci ∈ B(X) and 0 < ri ≤ r.

5. Applications and examples

In this section we search for practical criteria in order to verify that a strongly continuous
family of bounded and linear operators satisfy the functional equation (3.3). For this, we
consider the case where the operator A generates a C0-semigroup T (t) = eAt and the delay
operator F : Lp([−r, 0], X) → X is described by

Fϕ =

∫ 0

−r

H(θ)ϕ(θ)dθ, (5.1)

where H is an B(X)-valued q-integrable function on [−r, 0] with 1
q
+ 1

p
= 1. In particular, we

will show that in such case the operator A is the generator of a resolvent family with delay F .
We complete this section exhibiting two explicit examples of resolvent families with delay F .

Note that since eAt is a C0-semigroup, there exist constants L ≥ 1 and ω ∈ R such that
∥eAt∥ ≤ Leωt, t ≥ 0.

It is clear that F : Lp([−r, 0], X) → X is bounded. Also, for T > 0 and u ∈ Lp
loc([−r, T ], X),

using Hölder inequality and Fubini’s theorem we obtain∫ T

0

∥Fut∥pdt ≤ ∥H∥pLq

∫ T

0

(∫ 0

−r

∥u(t+ θ)∥pdθ
)
dt

= ∥H∥pLq

∫ T

0

(∫ t

−r+t

∥u(θ)∥pdθ
)
dt

≤ ∥H∥pLq

∫ T

0

(∫ T

−r

∥u(θ)∥pdθ
)
dt

≤ ∥H∥pLqT

∫ T

−r

∥u(θ)∥pdθ.

(5.2)

In what follows we consider the operator F defined in (5.1). We begin with the following
result on the existence and uniqueness of solutions.

Proposition 5.1. The integral problem,

u(t) = eAtx+

∫ t

0

eA(t−s)Fusds, x ∈ X, u(t) = 0, t ∈ [−r, 0), (5.3)

admits a unique solution u ∈ C([0,∞), X) exponentially bounded.
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Proof. We define the operatorK : Lp([0, T ], X) → C([0, T ], X) byKu(t) = eAtx+
∫ t

0
eA(t−s)Fusds.

Here u is extended to t ∈ [−r, 0) by u(t) = 0. It is easy to see that K maps Lp([0, T ], X) into
itself. Also, using the bound (5.2) and Jensen inequality we obtain∫ T

0

∥(Ku)(t)− (Ku)(t)∥p dt =
∫ T

0

∥∥∥∥∫ t

0

e(t−s)AF (us − vs)ds

∥∥∥∥p dt
≤
∫ T

0

sup
0≤s≤T

∥e(t−s)A∥ptp−1

∫ t

0

∥F (us − vs)∥pdsdt

≤ LepωT∥H∥pLq

∫ T

0

tp
∫ t

0

∥(u(s)− v(s))∥pdsdt

≤
(
LepωT∥H∥pLq

∫ T

0

tpdt

)∫ T

0

∥(u(s)− v(s))∥pds.

(5.4)

Let T > 0 be fixed such that LeωT∥H∥Lq

(∫ T

0
tpdt

) 1
p
< 1. We infer from (5.4) that K is a

contraction and therefore there exists a unique solution u ∈ Lp([0, T ], X) of (5.3). In particular
u ∈ C([0, T ], X).

To continuously extend the function u to the interval [T, 2T ] satisfying (5.3), we consider the

operatorK2 : L
p([T, 2T ], X) → Lp([T, 2T ], X) defined byK2u(t) = eA(t−T )u(T−)+

∫ t

T
eA(t−s)Fusds,

where u(T−) = lim
t→T−

u(t). Similarly as in (5.4) we obtain that K2 is a contraction with constant

LeωT∥H∥Lq

(∫ T

0
tpdt

) 1
p
. Hence, the function u can be continuously extended to the interval

[T, 2T ]. Now we observe that, for t ∈ (T, 2T ]

u(t) = eA(t−T )u(T−) +

∫ t

T

eA(t−s)Fusds

= eA(t−T )

(
eATx+

∫ T

0

eA(T−s)Fusds

)
+

∫ t

T

eA(t−s)Fusds

= eAtx+

∫ t

0

eA(t−s)Fusds,

showing that (5.3) is satisfied. Inductively, we can continuously extend the function u defined
on [nT, (n+ 1)T ], n ∈ N to the interval [(n+ 1)T, (n+ 2)T ] satisfying (5.3). Is not difficult to
see that such solution u is unique.

Now we will show that u is exponentially bounded. By (5.3) we have that

∥u(t)∥ ≤ etω∥x∥+
∫ t

0

e(t−s)ω

∫ 0

−r

∥H(θ)∥∥u(s+ θ)∥dθds

≤ etω∥x∥+
(∫ 0

−r

∥H(θ)∥dθ
)∫ t

0

e(t−s)ω sup
−r+s≤τ≤s

∥u(τ)∥ds

≤ etω∥x∥+Mr

∫ t

0

e(t−s)ω sup
0≤τ≤s

∥u(τ)∥ds,

where Mr =
∫ 0

−r
∥H(θ)∥dθ, which immediately implies

e−tω sup
0≤τ≤t

∥u(τ)∥ ≤ ∥x∥+Mr

∫ t

0

e−sω sup
0≤τ≤s

∥u(τ)∥ds.
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We now apply Gronwall’s inequality to obtain e−tω sup0≤τ≤t ∥u(τ)∥ ≤ ∥x∥etMr which implies

∥u(t)∥ ≤ sup
0≤τ≤t

∥u(τ)∥ ≤ et(ω+Mr)∥x∥. (5.5)

�
In view of the above, we can define the family {G(t)}t≥0 by G(t)x = ux(t) where ux is the

unique continuous solution of (5.3). We note that {G(t)}t≥0 is a strongly continuous family
of bounded linear operators and, by (5.5), the family is exponentially bounded. The family
{G(t)}t≥0 is defined by the null operator for all t ∈ [−r, 0) and satisfies that

G(t)x = etAx+

∫ t

0

e(t−s)AFGsxds, t ≥ 0, x ∈ X. (5.6)

The next result show that {G(t)}t≥0 satisfies the functional equation (3.3).

Theorem 5.2. The family {G(t)}t≥0, defined above, is a resolvent family with delay F .

Proof. Let x ∈ X and λ > ω +Mr be fixed. Applying the Laplace transform in both sides of
the equation (5.6) we have

Ĝ(λ)x = (λ− A)−1x+ (λ− A)−1BλĜ(λ)x,

which is equivalent to

(λ− A)(I − (λ− A)−1Bλ)Ĝ(λ)x = x.

We observe that

∥(λ− A)−1Bλx∥ ≤ ∥Bλx∥
ℜ(λ)− ω

≤ Mr∥x∥
ℜ(λ)− ω

,

thus ∥(λ − A)−1Bλ∥ < 1 for all ℜ(λ) > ω + Mr. With this, for ℜ(λ) > ω + Mr we conclude
that the operator (λ− A)(I − (λ− A)−1Bλ) = (λ− A−Bλ) has bounded inverse and

Ĝ(λ)x = R(λ,A, F )x.

Since Ĝ(µ)x ∈ D(A), for all x ∈ X, we have

Ĝ(λ)x− Ĝ(µ)x = Ĝ(λ)(µ− A−Bµ)Ĝ(µ)x− Ĝ(λ)(λ− A−Bλ)Ĝ(µ)x

= (µ− λ)Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)(Bλ −Bµ)Ĝ(µ)x,

which is equivalent to

Ĝ(λ)x− Ĝ(µ)x

µ− λ
= Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)

(
Bλ −Bµ

µ− λ

)
Ĝ(µ)x.

In view of the equation (3.10), and by the uniqueness of the inversion of the double Laplace
transform, we obtain that the functional equation (3.3) is satisfied and thus {G(t)}t≥0 is a
resolvent family with delay F . �

The following result provides a remarkable sufficient condition.

Theorem 5.3. If A is the generator of a C0-semigroup defined on a Banach space X and F is
defined as in (5.1), then the problem u′(t) = Au(t) + Fut, t ≥ 0;

u(0) = x;
u(t) = ϕ(t), −r ≤ t < 0

,

is mildly well-posed.
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Proof. By Theorem 4.4 and Proposition 4.3 the problem u′(t) = Bu(t) + Fut, t ≥ 0;
u(0) = x;
u(t) = ϕ(t), −r ≤ t < 0

,

is mildly well-posed, where

D(B) :=

{
x ∈ X : lim

t→0+

G(t)x− x

t
exists

}
and

Bx := lim
t→0+

G(t)x− x

t
, x ∈ D(B).

It follows from (5.6) that lim
t→0+

etAx−x
t

exists if and only if lim
t→0+

G(t)x−x
t

exists. Thus D(B) = D(A)

and Ax = Bx for all x ∈ D(A). This proves the theorem. �

Example 5.4. We set X = R and let a ∈ R be given. For ϕ ∈ Lp([−1, 0],R) and x0 ∈ R we
consider the scalar problem u′(t) = au(t) + u(t− 1), t > 0;

u(0) = x;
u(t) = ϕ(t), −1 ≤ t < 0

. (5.7)

We observe that the mild solution of the above problem, for the initial function ϕ(t) ≡ 0, is
represented by the integral equation

G(t)x =

 eatx+

∫ t

0

e(t−s)aG(s− 1)xds, t ≥ 0;

0, −1 ≤ t < 0
,

whose solution is the continuous function

G(t)x =
∞∑
k=0

(t− k)k

k!
e(t−k)a1[k,∞)(t)x, x ∈ X.

It is not difficult to see that ∥G(t)∥ ≤ et(a+1) for all t ≥ 0 and identifying Fut, as in Remark
4.7, by Fut = u(t− 1) for all t ≥ 0, we can conclude the following two assertions: The first is

that Ĝ(λ) = (λ− a− e−λ)−1 = (λ− A−Bλ)
−1 for all λ > a+ 1, which implies that

Ĝ(λ)x− Ĝ(µ)x

µ− λ
= Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)

(
Bλ −Bµ

µ− λ

)
Ĝ(µ)x, x ∈ X.

The second is that

Bx := lim
t→0+

G(t)x− x

t
= ax, for all x ∈ D(B) = R.

In view of the equation (3.10), and by the inversion of the double Laplace transform, we obtain
that the functional equation (3.3) is satisfied and thus {G(t)}t≥0 is a resolvent family with delay
F . Also by Proposition 4.3 we obtain that B is the corresponding generator.

It follows from Theorem 4.4 that under the above described conditions the problem (5.7)
is mildly well-posed and it follows from Proposition 4.5 that the solution of (5.7) is given by
u(t) = G(t)x+ (G ∗ Fϕ↑)(t), t ≥ 0.
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Example 5.5. We consider the one dimensional diffusion equation with finite delay
∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + u(t− 1, x), t ≥ 0, x ∈ [0, π];

u(t, 0) = u(t, π) = 0, t ≥ 0;
u(0, x) = u0(x), x ∈ [0, π];
u(t, x) = ϕ(t, x), −1 ≤ t < 0, x ∈ [0, π]

. (5.8)

where, u0 ∈ L2([0, π],R) and ϕ ∈ Lp([−1, 0], L2([0, π],R)). To study this system in an abstract
setting as (1.1), we choose the space X = L2([0, π],R), x = u0(·) ∈ X, ϕ(t) = ϕ(t, ·) for all
−r ≤ t < 0 and the operator A : D(A) ⊆ X → X given by Ax = x′′ with domain

D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}.

It is well known that A is the generator of an analytic semigroup {T (t)}t≥0 on X.
Similarly to Example 5.4 the family {G(t)}t≥0 defined on X by

G(t)x =
∞∑
k=0

T (t− k)
(t− k)k

k!
1[k,∞)(t)x, for all t ≥ 0,

is a continuous solution of the integral equation

G(t)x0 =

 eatx+

∫ t

0

e(t−s)aG(s− 1)xds, t ≥ 0;

0, −1 ≤ t < 0
, (5.9)

Let L, ω > 0 be constants such that ∥T (t)∥ ≤ Letω for all t ≥ 0. We observe that ∥G(t)∥ ≤
Let(ω+1). If x ∈ X and λ > ω + 1. Then, applying the Laplace transform in both sides of
equation (5.9) and noting that Bλx = e−λx for all x ∈ X, we obtain

Ĝ(λ)x = (λ− A)−1x+ (λ− A)−1BλĜ(λ)x,

which is equivalent to

(λ− A)(I − (λ− A)−1Bλ)Ĝ(λ)x = x.

We observe that

∥(λ− A)−1Bλx∥ ≤ ∥Bλx∥
ℜ(λ)− ω

≤ ∥x∥
ℜ(λ)− ω

,

thus ∥(λ − A)−1Bλ∥ < 1 for all ℜ(λ) > ω + 1. With this, for ℜ(λ) > ω + 1 we conclude that
the operator (λ− A)(I − (λ− A)−1Bλ) = (λ− A−Bλ) has bounded inverse and

Ĝ(λ)x = R(λ,A, F )x.

Since Ĝ(µ)x ∈ D(A), for all x ∈ X, we have

Ĝ(λ)x− Ĝ(µ)x = Ĝ(λ)(µ− A−Bµ)Ĝ(µ)x− Ĝ(λ)(λ− A−Bλ)Ĝ(µ)x

= (µ− λ)Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)(Bλ −Bµ)Ĝ(µ)x,

which is equivalent

Ĝ(λ)x− Ĝ(µ)x

µ− λ
= Ĝ(λ)Ĝ(µ)x+ Ĝ(λ)

(
Bλ −Bµ

µ− λ

)
Ĝ(µ)x.
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In view of the equation (3.10), and again by the inversion of the double Laplace transform, we
obtain that the functional equation (3.3) is satisfied and thus {G(t)}t≥0 is a resolvent family
with delay F . Furthermore, we observe that

Bx := lim
t→0+

G(t)x− x

t
= lim

t→0+

T (t)x− x

t
= Ax, for all x ∈ D(B) = D(A).

Thus, A is the generator of the resolvent family {G(t)}t≥0 with delay F .
It follows from Theorem 4.4 and Proposition 4.5 that the problem (5.8) is mildly well-posed

and that the solution of (5.7) is given by u(t) = G(t)x + (G ∗ Fϕ↑)(t), where x = u0 and
ϕ(t) = ϕ(t, ·) for all −r ≤ t < 0.
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